
I

: i

FINAL REPORT

EE-SSL- 1767

I THERMAL MAPPING OF THE LUNAR SURFACE

D

B

By
_ m

_. L. Raine.

I -°

September 1973

Prepared For

_ . ELECTROMAGNETIC AND SOLID STATE PHYSICS DIVISION

SPACE SCIENCES LABORATORY

GEORGE C. MARSHALL SPACE FLIGHT CENTER

-,- Contract No. NASS-Z6343 '

.. Prepared By

-- ELECTRONICS AND ENGINEERING

TELEDYNE BROWN ENGINEERING !

j .. HUNTSVILLE, ALABAMA !

"" j

1974024136



|

ABSTRACT

iiJ

A program of lunar infrared radiometry which uses large-area

_ scanning is described. Procedures for atmospheric attenuation correc-

tion and data reduction to temperature by relative radiometry are out-

lined. Flow charts of the computer data reduction program are included,

which also contain the astrometric analysis from ephemeral data. The

scan data of ten evenings in 1971 and 1972, taken in the 10- to 12-

micrometer window, are presented as isothermal contour maps of the

lunar disc. More than 160 areas of anomalous therrnal emission have
II

been found in the lunar darkside data. A table is presented listing these

regions. Eclipse cooling curves measured in the same wavelength
band

f

for seven lunar regions during the eclipse of February I0, 1971, are

also presented. Errors of the scan and eclipse data are calculated from

accuracy estimates of the parameters.

Approved:
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Manager
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1. INTRODUCTION

Infrared radiometric measurements of lunar heat radiation

began in 1929 with the measurements of Pettit and Nicholson [Bef. 1).

Their instrument incorporated a vacuum thermocouple attached to

the 100-inch reflector at Mt. Wilson. These workers succesbively

measured the entire lunar radiation transmitted by the atmosphere, and

the radiation transmitted by a microscope cover gle.ss. The difference

in these measurements was assumed to be entirely heat radiation. Their

effective wavelength band essentially covered the region from 8 to 14 i

Imicrometers. Their observations included a number of scans across

the disc, measurements of the subsolar point, and eclipse measurements. !

The first isothermal maps of the daytime lunar surface were

constructed in 1960 by Geoffrion, Korner, and Sinton (Ref. Z} from

measurements with a pyrometer in the spectral band from 8.0 to 9.5

micrometers. Eclipse measurements of the crater Tycho were also

made by Sinton (Ref. 3).

The most extensive measurements of the illuminated lunar

: surface have been made by Saari and Shorthill(Ref. 4). Their radio-

meter contained a mercury-doped gel'manium photodetector working

in the band from I0 to IZ micrometers. These authors have completely

mapped the daytime lunar surface, both in the infrared and, with a

phototube, in the visual region, at selected phases throughout a func-

tion. Their measurements have also been presented as isothermal

I: contour charts. Their data are of high spatial resolution, and the

charts clearly show contours outlining specific features. Calculated

temperatures for the lunar subsolar point were used for their absolute
B_

calibration.
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Largoly because of the relatively low signal, somewhat fewer

measurements have been taken of the nighttime lunar surface. Measure-

ments have been made by Saari (Ref. 5), by Low at 20 micrometers

i (Ref. 6), by Mendell and Low also at 20 micrometers (Ref. 7), and by
!

Murray and Wildey in the 8- through 14-micrometer band (Ref. 8).

This last group used a mercury-doped germanium detector cooled tQ

liquid hydrogen temperature. These authors have also constructed a

thermal contour chart of the nightt:me surface near last quarter phase

under rather low resolution (Ref. 9).

Measurements of the ter-perature of the lunar nighttime surface

are important in ascertaining the thermal environment to whic]t instru-

mentution left on the Moon will be subjected. Such measurements are

more important than lunar daytime surface measurements in the defini-

i tion of the thermophysical structure of the near surface layers. More

extensive r_ciiometric data of the lunar nighttime surface are clearly d

needed. _,

For the past 4 years, Teledyne Brown Engineering has been !

involved in the acquisition of such measurements in cooperation with

the Space Sciences Laboratory, MSFC (Refs. 10 through 17 and Z6). The

dewar-detector system for these measurements was obtained from

Infrared Industries of Tucson, Arizona, and the radiometer was desig,md
J

and developed by Teledyne Brown Engineering.

The radiometer uses dual germanium bolometric detectors

working in bands from 10 to 12 micrometers and from 17.7 to 25.0

micrometers. Most of the work to date has been in the 10- to 12--

micrometer band. The radiometer has been used attached to a 30-

centimeter telescope in Huntsville, and also attached to a 1.5-meter

• telescope in Arizona.

° .

1-Z
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I_ The theory of measurement is simple. A measurement is

I: made of the lunar radiance in the wavelength band of the instrument.
Both infrared spectral bands lie at sufficiently long wavelengths that

I_ scattered sunlight from the surface is negligible. The radiation
observed is, therefore, primarily lunar heat radiation. Withthe

!_ assumption that this measured radiance is described by the Planck•

Radiation Function, a corresponding temperature is calculated. The

_ temperature obtained is, therefore, a brightness temperature, rather
4_

than a color temperature.

Because of problems of diffraction of the radiation by the field

limiting apertures located within the dewar, and also because of align-

ment problems, it was decided to perform the absolute calibration of

the radiometer with the Moon as the source. The measurements of

Saari and Shorthlll were used for this purpose. The astrometric

analysis was done according to the procedure ofIngrao (Ref. 18).

_'_ The results of the scan data are presented here as isothermal

"_ contour charts. The h:nar phases mapped and amounts of data for each

_ are presently incomplete, because of difficulties with the equipment and

"_ weather.

Radiometric data were also taken during the total lunar eclipse

of February 10, 1971. Data in the 10.0- to 1Z.5-_ band were recorded

for seven regions, and cooling curves are presented here for each.

-,_ The results presented here represent a culmination of the

-o efforts of a rJumber of people. The author wishes to thank the following

_ persons, without whose help these results would have been impossible.

• The first four named individuals especially have made major contributions.

f

I
1-3
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Mr. W. F. Fo,lntain has been the coordinator for NASA for the

Project. He has worked tirelessly with the observational apparatus
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t

responsible for the continued operation of the apparatus. Mr. J.A. _ -
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i
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g

i
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2. THERADIOMETER

The radiometer has been previously described in detail (Ref. 16).

Therefore, only a brief description is presented here.

An optical schematic of the instrument is shown in Figure Z-1.

' The radiometer was designed to accept a cone of radiation of about

_. F/16, which is typical of Cassegrain telescopes. Radiation from the

telescope enters at the top of the figure. The 10-hertz chopper alter-

nately passes the lunar radiation into the dewar, or below to the visual

section of the instrument. The sky mirror reflects sky background

radiation into the dewar between chop cycles. The light entering the
i
* visual section of the instrument passes first through the thick ooiass

image deflector plate, and is reflected by the focal plane mirror through

._ a lens reimaging system to the eyepiece or camera. A visual photo-

meter may be added as an accessory directly below the focal plane
!
. . mirror. Light is passed to this unit through a small hole in the coating

of that mirror.

• " The focal plane mirror has four fine wires glued to its surface

i to serve as a crosshair. When the instrument is inuse, this mirror is

" carefully adjusted so that the crosshair is optically in precisely the

_-" same position as the infrared detector. Anx-y screw motion serves
. m

as a coarse adjustment for this alignment, and the image deflector

_ plate provides the fi,_e adjustment. Photographs made with the camera,

and also observation through the eyepiece, reveal the crosshair super-

" posed on the lunar image, and these mark the exact position of the
!.

detector field.

! The dewa contains dual germanium bolometric detectors cooled '

by liquid helium. These detectors are each 0.5 millimeter in diameter,

it

_--1 i
i
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and correspond to an angular resolution of 22 arcseconds with the 30- i

centimeter telescope, and 4.5 arcseconds with the 1. S-meter telescope, i

Sensitivity of the detectors is enhanced by pumping on the liquid helium,

L which produces a temperature drop to less than Z°K. Filters provide

response in the regions from 10 to lZ micrometers and 17.7 to Z5.0 micro-

meters. The relative detector-dewar response curves arc shown in

Figures Z- _ and Z-3. Cooled apertures inside the dewar limit the field

of view so that the detectors see primarily mirror surfaces. The

detectors may not be ased simultaneously.

Since the instrument incorporates a chopper which chops alter-

nately between lunar and sky radiation, the detector output is an ac

! signal. The preamplifiers for the two channels are mounted directly to

the dewar. From the pr_;amplifier, the signal goes to an amplifier

• designed for this system by Dr. F. J. Low of the University of Arizona.

A phase signal transmitted from the chopper to this unit also allows the

amplifier to synchronously rectify the signal. The resultant dc voltage,

- - which nearly represents the signal caused solely by transmitted radia-

• - tion, is recorded by a Hewlett-Packard Data Acquisition System. The

- - system consists of a scanner, digital voltmeter, clock, paper printer,

• • counter, and magnetic tape recording system. For all of the data

-_ reported here, an integration time of 1 second has been used.

. o

A separate, custom-built unit allows synchronization of the

! camera with the chopper. At the moment that a photograph is taken,
&

the time and a frame number are recorded on the film by a unit attached

,_! to the camera back. This information is also simultaneously recorded
o o

on the papez printout and magnetic tape. The radiometer as attached

_ to the 60-inch SSL-LPL telescope is shown in Figure Z-4. i
m • 'i

mp _

""u,,

Z- 3 _
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3. THEOBSERVATIONAl_DATA

t t,

. _ Regular observations with the infrared radiometer began in

December 1970. Since that time, data have been obtained in numerous
m •

sessions. These data are from both the Huntsville and Arizona locations

and are in the 10- to 1Z-micrometer band. For sites having reasonable

_ . atmosperic transmission at 20 micrometers, the longer wavelength is

to be preferred, since the ma_or portion of radiation from the cool lunar

nighttime surface is at these wavelengths. However, because of the

low altitude and relatively humid climate at Huntsville, it is dubious

that any benefit would be gained by observing from Huntsville in :he

17.7- to 25.0-micrometer band. The Arizona site, which is at an

altitude of 8, 500 feet in the Catalina Mountains near Tucson, is more

suited to the longer wavelength band.

For scan data, the observational routine is as follows;

• At the beginning of the evening, a single point on the

lunar surface, usually near the subsolar point, if
possible, and in a maria region, is selected for

measuring atmospheric attenuation. This "extinction
point" is observed first.

• A series of calibration points, located away from the

terminator or in rough highland regions, is observed
next. These points are otherwise widely distributed
over the surface.

• The acquisition of scan data Ls begun next. Usually,
these are drift scans, i.e., the diurnal motion of the

Earth is used to carry the lunar irr, age past the

detector. For shifting of the scans in declination,
either the lunar motion in declination is used, or the

scans are shifted by incremental movements of the
telescope in declination. The latter is somewhat
awkward, and spatial resolution is sometimes improved

by quickly rescanning lunar regions. A portion of sky

! -

• ° 3-1
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is a_ways included at each end of each scan. At least

.. one photograph is recorded during passage across the
illuminated portion. The extinction point is periodi-

cally measured during the scanning period.

• At the end of the scanning session, the calibration

points are measured again.

• Finally, a measurement is made of the extinction

point.
m_

.. During periods in which extinction or calibration points are being

measured, a sky background reading is taken with both radiometer_4

_ beams. For each type of observation, a manually set code is entered

on the tape. This code includes the wavelength (10 or t0 micrometers),

the site (Huntsville or Arizona), the lunar calibration point for a cali-

bration obs er ration, the type of observation (extinction point, ,:al_ibration

._ point, sky reading, or scan data), and the date. Recording of this code

is effected with the taking of a photograph, which is done for each type

._ of observation. Photographs during scanning are necessary in order

.. to carry out the astrometric analysis. The photographs of the extinction

,_ and calibration points are essential later in the determination of tern-

.. peratures of these points from the Saari and Shorthill data. Photographs

.... taken during the sky readings provided an additional check against stray

_. radiation. The time is periodically recorded automatically on the tape.

_ The reader will note that separate observations are made for

"" extinction and calibration points. These could be combined, but the

opportunity of holding one of the two basic independent variables (source

"" temperature or air mass) constant for each determination affords

greater accuracy. In determination of the attenuation coefficient,

"" widely varying air ma_s values, but constant source temperature, are

desirable; in determination of the calibration constant, a single air

mass with widely varying source temperatures yields the most accurate

value. Since the scans cross illuminated portions of the disc for which
4$O*
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the data of Saari and Sho=thill may be interpolated, the separate

measurement of extinction or calibration points might even be ignored

completely. However, use of this scan data for calibration and extinc-

tion correction would needlessly complicate the data reduction routine.

Table 3-1 presents a summary of the observational data obtained

to date. Included in this table are the date, wavelength region of the

observations, the site (Huntsville or Arizona), the number of scans

recorded, and the solar selenographic colongitude. The reader will note

that these observations are incomplete, which is due to difficulties with

the instrumentation or the weather.

Planetary data have also been obtained. Sufficient data for a

low resolution thermal map of Jupiter were recorded on May 31, 1971,

at Huntsville in the 10.0- to 12.5-micrometer band. Measurements

for higher resolution _hermal maps of Mars were obtained in the same

band at the Arizona observatory. These data were recorded during

the recent favorable opposition, on September 11 and again on September

16, 1971. Time has not yet allowed reduction of these data.

Radiometric measurements of Saturn were also attempted during

_ September 197], from the Arizona staticn. The planet could not be

._ detected in the ]0.0- to 12.5-micrometer band due to noise. A later

. _ noise analysis indicated an upper limit brightness temperature of 100°K.

. _ This is in agreement with the previous estimate of 95°K for the planet

. (Ref. 1__).

4
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TABLE 3-I. SUMMARYOF LUNARSCAN OBSERVATIONS
wo

-- SOLAR
DATE WAVELENGTH NO. SEL.

''_ (GREENWICH) (p) SITE SCANS COL. REMARKS
,. ,',I

12/18/70 I0 to 12 H 13 Tape unit malfunction

_" 12/24/70 I0 to 12 H 16 Tape unitmalfunction

-- 1/16/71 I0 to 12 H 70 143° Darksidedata

• _ 1/20/71 I0 to !2 H 12

_, 2/6/71 I0 to 12 H 34

.. 2/15/71 17 to 25 A 6

2/19/71 I0 to 12 A 33 No photos, but recoverable

5/31/71 I0 to 12 H 50 No darkside data, 13
" " Jovianscans

-- 6/I/71 lO to 12 H 50

_ 9/11/71 I0 to 12 A 45 168° Darksidedata,8 Martian
scans

9/12/71 I0 to 12 A 62 181° Darkside data

9/13/71 lO to 12 A 19 Darkside data

" 9/14/71 I0 to 12 A 37 Darkside data, I0 Martian
scans on 16th

10/30/71 I0 to 12 H 55 No darkside data

11/4/71 I0 to 12 H 87 Full moon data

11/5/71 I0 to 12 H 62 116° Oarksidedata

II/8/71 lO to 12 H 50 154° Darksidedata

_" li/II/71 I0 to 12 H 30 Darksidedata

-- ll/14/71 lO to 12 H 40 206° Darksidedata

,- ll/21/71 lO to 12 H 7

. . 11/22/71 I0 to 12 H 21

1/24/72 17 to 25 A 56 No darkside data

1/25/72 lO to 12 A 71 No darkside data

1/27/72 lO to 12 A 72 No darkside data

9/26/72 17 to 25 A 44 Darksidedata

9/29/72 lO to 12 A 41 170° DarksideData

" 9/30/72 I0 to 12 A 50 182° DarksideData

"" 10/I/72 I0 to 12 A 55 194° DarksideData

,- 10/2/72 I0 to 12 A 33 207° DarksideData

| "" NOTES: A - ArizonaData,H - HuntsvilleData

3-4
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4. DATA REDUCTION

4. 1 REDUCTION OF THE IVIEASUREMENTS TO BPIGHTNESS

' TEMPERATURES
m

For several reasons it was decided to effect a_,solute calibra-

tion of the entire radiometer .telescope system upon the Moon. These

are as follows:

- • Fresnel diffraction occurs at the baffling apertures

inside the dewar (Ref. 17). Diffract;;_; affects the

focusing of the radiation apon the detector and there-

- fore the geometrical factors occurring in the equations
for absolute calibration and radiation measurement.

Even with an electronic computer, calculation of these
diffraction-modified constants would be arduous in

practice.

• The precise alignment of the dewar-detector syster

with the telescope required for laboratory calibrationf, -

_, would be difficult to achieve. Inaccuracy of this align-

" ment would degrade the accuracy of the results.

I -

• Calibration of the entire radiometer-telescope systen_

upon the Moon eliminates the necessity of knowledge

_ of optical parameters such as emissivities and mirror

reflectivities. The geometrical arrangement may be

'_ any whatever. The method is also less sensitive to

_ . errors in atmospheric attenuation correction.

" _ The reader may recall that relative radiometry is not uncommon in
.

astronomy. It has been used, for example, by Saari and Shorthill

(Refo 4) and by Low {Ref. 6).

Our procedure is the determination of an absolute calibration

constant for the entire telescope-radiometer sysf_mo The extensive

data ofSaariand Shorthill, after correction for the local _olar zenith

angle and distance, are suitable for this purpose. At each observing

4-1
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session a series of calibratio_ points, including an extinction point,

is selected on the iunar surface. These are selected in maria regions 2

well rein Cod from the terminator. This £s do._e since the temporal and

spacial variations in brightness temperature are the least in these regions,

and the approximate procedure used for solar zenith angle correction is

invalid in ne terminator _egion, In addition, use of warmer regions for
1.

calibration produces smaller fractional errors in the measured tempera-
F"
: tures, as shove, by examination of the factor [ D(Tc)]-z which appears

in Equations 6-5 and 6-6. Otherwise, these points are widely selected

over the illuminated surface.

-- The signal voltage V m due to detected lunar radiation is reiated

to the lunar surface temperature T m by

a_

/' •V m = G T Ta(k) pT3(k) _m(k) Rs(k ) N(k, Tin) dk (4-1)
JC

The constant G T is a geometrical factor which depend,'-, upon telescope

:] and detector system parameters such as telescope collecting area, focalt

_ length, detector and baffling aperture sizes and separation. Variation
: ot G T with wavelength due to diffraction effect_ is small. All other

. parameters on the right side of Equation 4-1 are _avelength dependent

and are included in the ir.tegrand. These are the atmospheric trans-

.. mission Vaik_, the mirror reflecdvi_y p r(k), the lunar surface emis-

- sivity Era{k), the responsivity Rs_k) of the complete detector-dewar

_ system including the filter and optical window, and the blackbody radi-

ance N(k: T m) corresponding t_ the lunar surface temperature, Tm.

It is anticipated that the quantities pT(k} and Era(k) will remain

fairly uniform over the wavelength ranges of interest (10.0 to 12.5

micrometers and 17 to 25 micron_eters). Although there is some

4
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t
variation of Ta with k in the 10. O- to lZ. 5-micrometer band, this wave-

ii: length region corresponds to an excellent atmospheric "window". The
window in the 17- to ZS-micrometer band is not nearly as good, and the

" variation of 1"a with k is more pronounced there. If average values for

PT, Era, and v a over wavelength are used, these quantities may be taken

- outside the integral and Equation 4-1 be rewritten as
may

_ " Vm = GT_T 3Fro Rmax _a O(Tm) • {4-Z)|.

_ Here Rma x represents the maximum value of Rs(k) in the wavelength

interval, and the function Q(T m) is defined by

_: Rs (k)
Q(Tm) = N(k, Tin) dk (4-3)

° . Rmax

" - and is seen to be the integrated lunar surface radiance weighted b7 the

: normalized radiometer responsivity.

The infrared atmospheric absorption spectrum is largely
m .-

characterized by molecular absorption bands which are composed in

turn of multitudes of absorption lines. In order to facilitate the calcu-

lation of the infrared transmission of gases over broad wavelength
"

regions band model approximations have been devised. Two important

models consider the absorption lines in the band as uniformly spaced

{Elsasser model, Ref. 19), or as randomly spaced (Goody model,

Kef. Z0). These models have been further simplified in the case of

. weak lines, or of strong lines. Since the wavelength region from i0.0

to 12.5 micrometers corresponds to an excellent window, _a has been

_,_ represented in this band by the weak line case (Ref. 21) for these models

. _ with air mass as argument. Here 7a is given by

U
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T'a : exp (-kI X) , (4-4)

where the constant kI is an extinctioncoefficientand X is the air mass.

The stronger attenuationin the 17- to 25-micrometer region is dominated

by HzO absorption, which consists of randomly spaced lines. Conse-

quently, for this band, the strong-random band model approximation

(Ref. Zl) has been chosen. This approximation predicts the functional
-- f

] form of v a to be8

:] = expC-k, , (4-S) i
_..2,

: where ks is the attenuationcoefficientand the air mass is again used

as argument. Although the band-model approximations for both bands

have been incorporated intothe computer-reduction program, oniy data
bo

in the I0.0- to IZ.S-micrometer band have been reduced to date.

-- Because of the radiation chopping method employed, the actual

- signal voltage Vm' recorded during lunar observation is very nearly

- " equal to the sigxJalvoltage Vm due solely to detected lunar radiation.

-- However, due to slightimbalances in the two radiometer beams, a

•" residualbackground component AVb may be present in Vm'. Periodic

- sky observation with both beams provides this component. The cot-

" rected signal V m is then obtained from

(

V m = Vm'-AVb • (4-6)

Ii
Since the variation of Em with the lunar topography is not known,

T the product G T pT _ _m Rmax in Equation 4-Z may be represented by a
single symbol. Let

I :
K = G T _TS_m Rmax • (4-7)

T
4-4 1
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After substitution of Equations 4-6 and 4-7 into Equation 4-Z, i

Equation 4-2 becomes !

1

V m' -AV l = K_a Q(Tm) • (4-81 'i

Equations 4-8, and 4-4 or 4-5, and the definition of Q(Tm) given by

Equation 4-3 are the basic relationships used in reduction of the meas-
1
1

urements to temperature values, i

In order to effect absolute calibration and to facilitate deter- i

ruination of the extinction coefficient, the lunar surface reference point !

temperatures are needed. These are read from the Saari and Shorthill

data and are corrected for differences in local solar zenith angle and

the solar-lunar distance. At the lunar surface, the condition

Absorbed Flux conducted Radiated
= +

solar flu:: inward flux

must be met. Symbolically, this condition is expressed by

cos Z®
(1 - A) F e Fc + E'm "_ Tm 4 (4-9)

de2 -

where

!

A - lunar albedo

F e - total solar flux at a distance of 1 A.U. (the solar <+

constant) i

Z s - lunar local solar zenith angle

do - solar-lunar distance, A.U.

F c - inwardly conducted flux.

4-5
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For lunar daytime regions not near the terminator, previous studies 7

(Kef. ZZ) indicate that the term F c is small. In this case

cos Z e
(I - A) F® = E mot Tm 4 (4-I0)

de z

The quantity cos Z e may be expressed in terms of the orthographic

coordinates _, _ _ _, of any point and the coordinates _e, _ e' _e,of the subsolar point by

_=_

I
.! cos Z e = _e +_e + _-_ " (4-11)

"" Under two different condition,_ of illumination, Equations 4-10 and 4-1 1

-- indicate that the lunar surface temperatures Tml and Tm_ are related by

_l

= . (4-1Z)

[i
For each calibration point or extinction point, temperature values are

" read from the Saari and Shorthill charts
having phase angles straddling

the phase angle of the observations. These are corrected to our condi-

" tions by Equation 4-1Z. The difference in these corrected values is

usually small (a few K degrees or less), and an interpolation over phase

angle is used to obtain the final value. Presently this procedure has not

becn incorporated into the computer-reduction program, but rather is

done by hand.

. - The atmospheric attenuation coefficient is obtained as the first
i
• stage of the co,.-nputer.reduction program. Let T R be the lunar surface

- _ extinction point temperature. Expressions 4-4 and 4-5 may be substituted,

• - in turn, into Equation 4-8 which is then rewritten as

4-6
T r
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i i I '• ......... :_ _'4 -_:7__'J*7_-" _

iO(TR) = -k I X �InK(4-13} ]

for the weak line model, and as

In h_TR-_ J = "kz'c'X + In K (4-14)

for the strong- random llne model. Observations of the reference point

should be made for various values of air mass X. A straight line fitted

to a plot of the left side of Equation 4-13 as a function of X yields -k 1

as slope for the weak line model. For the strong-random line model,

-k z is the slope of a straight line fitted to a plot of the left side of

Equation 4-14 as a function of _X. Note that in both cases the plots

yield In K as the X = 0 intercept. However, use of nearly simultaneous

multiple calibration points as described above is to be preferred for the

determination of K.

Observation of a single calibration point of known temperature T c

is sufficient for the determination of K. A more accurate determination is

possible if several points are measured. The well-known method of least

squares may be used to fit the observations of V c' - AV b as a functior, of

7 a O{T c) with a line passing through _._e origin. The value of K is then

given by

N !

7ai Q (Tci)(Vci- AV b)
i=l

K -- (4-15)N

['rai 0 (Tci)] z
i-I

4-7 :i
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!

for N calibrationpoints• Because of a possible slightvariation of K,

! i values of this calibrationuarameter are obtained from observations at

the beginning of an observing session and again from observations at

: the end of the session. The value used in the data reduction is inter-

polated from these observations.
"" T

Note that a constant value for K is assumed in determination of

_-_ the attenuationcoefficient• Although this may produce a small error in

• _" this coefficient, only a much smaller error is produced in the determined

- - temperature values, since the measurements are relative• Interpolation

of the K values stillprovides a good correction•

; : The value of K obtained is correct, regardless of diffraction

effects, and the telescope-radiometer geometry may be any whatever.

The method is also independent of the alignment of the optics, provided

it is unchanged.

The value of Q(Tm), and_ therefore, Tin, is then determined

. . for any unknown point by evaluation of the quantity

!

Vm - AV b

" " Q(Tm) = KV a " (4-16)

Early in the project, in an effortto increase effectiveresolu-

tion in the advance direction, successive rescanning of the lunar disc

was tried. Trouble with thisprocedure was encountered due to lunar

surface temperature variations with phase change and atmospheric

. transparency variations during the several-hour time period required

for scanning. A procedure, which is based on thermophysical lunar

surface models, was devised for making adjustments to surface tem-

peratures for phase changes which would be valid over small time

periods. This procedure is described in the appendix. In practice,

the maximum amount of the adjustment has been about I0 K ° with the• .

4-8
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bulk of the adjustments less than 1 K °. This procedure satisfactorily
!: -.

solved the phase change problem, but the more significant atmospheric
_-= mmm

i transparency variation problem remained. Subsequent data have been

taken in single scannings of the lunar disc with a larger number of scans

; recorded. However, because of its success the adjustment procedure

has remained in the program.

4.2 THE COMPUTER REDUCTION PROGRAM
im

_. The procedure for the astrometric analysis of the data is that

_, of Ingrao, et al and has been previously described in detail (Refs. 18,

• . 14, and 16). The procedure for reduction of the measurements to

,& temperatures is presented in Section 4.1. This section, therefore, pre-

-_ sents only a brief description of the computer reduction program, as

-., shown in the accompanying flow charts, i

The data, which is entered on magnetic tape, is divided into

separate files on the tape. Each file consists of an integral number

I: of records, each of which consists, in turn, of Z4 signal values and
a time value (in hours, minutes, and seconds). The files are used

_: for separationofthetypes of data recorded, andalsotoseparatethe
individual lunar disc scans. For lunar work, four file types are used:

_W

calibration files, extinction point files, sky files, and a data point
m

file for each disc scan. Each file is identified by a manually set code

within the file. After reading these codes, the computer may call the
n

file when needed. All signal values in each calibration file, extinction

point file, and sky file are averaged by the computer. One of these

files, therefore, constitutes a _ingle observation, and the sky files
_m

are used for the correction of the calibration and extinction point files.

A summary of the entire reduction program is shown in
• !

i "" Figure 4-1. The detailed flow charts are divided into eight sheets.
if .,_ Five of these sheets present the basic program, and the three remaining

i , 4-9
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sheets outline routines which are used repeatedly in the p_'ogram. These

routines will be described first, followed by a description of the main

program.
mm

_ The topocentric ephemeris routine ._s outlined in Figure 4-2.

_., The Ephemeris (Kef. 23) presents data as geocentric quantities, and this

_ routine is used for conversion of these data to topocentric quantities.

-. In the flow charts, the numbers on the blocks show the order of the

_ calculations, and the arrows show the flow of quantities. The routine

-- is entered with the ephemeral data, the observer's coordinates, and

_ the _me. Interpolation of the ephemeral data is followed by calculation

-- of the geocentric hour angle and zenith angle, the observer's position

.__ angle, and the topocentric parallax. Other auxiliary quantities are

o- calculated which allow translation of the geocentric lunar coordinates

_ and distance to topocentric values. The outputs of this routine are

-- the topocentric librations in selenographic longitude and latitude, the

_ topocentric lunar position angle, the topocentric lunar distance in units

-_ of the lunar radius, and the topocentric coordinates of the lunar center.

The topocentric coordinates routine is shown in Figure 4-3.

This routine describes the calculation of topocentric hour angle and

declination for any point on the lunar surface from the input orthographic

coordinates. The quantities input to the routine are the lunar orthographic

coordinates _ and _, topocentric ephemeral data computed in the topo-

centric ephemeris routine, the sine and cosine of the observer's latitude,

and the differential refractive index between the visual and infrared

wavelengths. The first portion of the routine transforms the ortho-

graphic coordinates in succession through three other rectangular

coo_'dinate systems These coordinate systems are described fully in

Reference 16. This is followed by conw.'sion to topocentric hour angle

and declination. These are the coordinates of the photographed point.

The final conversion of the routine transforms these coordinates to the

.. 4-11
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coordinates seen by the infrared detector by taking differentialrefrac-

tion intoaccount.

__ The air mass routine, shown in Figure 4-4, takes as input these

,-, topocentric detector coordinates and the sine and cosine of the observer's

__ latitude. A calculationof the secant of the zenith angle is performed,

,_ and this is followed by a correction for curvature of the atmosphere

__ and refraction. Correction for altitude is not needed for the method

, ,_ of atmospheric attenuation correction used in the program.

" The basic program is outlined in Figures 4-5 through 4-9.

The first step is the calculation of the attenuation coefficient, shown in

" Figure 4-5. The compute: selects all of the extinction point files and

corresponding sly files. Also input are the ephemeraldata, coordinates

describing the observer location, and the lunar orthographic coordinates

and temperatures of the lunar surface extinction points. The air mass

values for the observations are computed following recourse to the

topocentric ephemeris routine, the topocentric coordinates routine,

and the air mass routine. The attenuation coefficient k 1 or k z is

obtained by fitting a line by the least squares method to the data

according to Equation 4-13 for observations at 10 micrometers and

according to Equation 4-14 for observations at 20 micrometers. These

equations correspond to the weak and strong random line absorption
• 0

band approximations, respectively.

The next step of the program is the calculation of the calibration

. . constants. This is shown in Figure 4-6. Two calibration constants

are calculated, one each for the begir_ing and end of the evening.

. Corresponding times are also obtained for the beginning and end of the

,_ evening, so that each value of the calibration constant used in the program

.. may be t_me-interpolated. This portion of the program is entered with

the calibration and sky files for the beginning and end of the evening, data

._ describing the location of the observer, and the lunar orthographic

4-_4
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INPUTsin @', cos ¢', hD, _D I
I

CALCULATEsec ZD BY

_ec ZD ::

(sin_' sin 6D + cos ¢' cos 6D cos hD)-I

1

OBTAINX FROM !

X = sec ZD - 0.0018167(secZD - l) - 0.002875(secZD - I)21J

-0.0008083(secZD - I)3 I
I

1
OUTPUTX I

FIGURE4-4. AIR MASS ROUTINE
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coordinates and temperatures for the chosen lunar surface calibration

|,_ points. Air mass values are computed following use of the topocentric

ephemeris routine, the topocentric coordinates routine, and the air mass

routine. The attenuation coefficient obtained in the proceding step is

used with the air mass values for determination of atmospheric trans-

mission values. The v_lues of K are next obtained by evaluation of

Equation 4-15. The corresponding times are averages over the times

of the calibration files.

_-_ Each lunar disc scan is handled separately; Figure 4-7 shows

i _ the first phase of the scan reduction. This phase describes the calcu-

- lation of the topocentric coordinates of the object points in the scan.
° The section begins with the calculation of the topocentric hour angle

_-7 and declination coordinates of the detector field at the times of the

photographs in the scan. If there is only one photograph, the program

-- assumes no telescope motion. If more than one photograph has been

,I . recorded, the program calculates the rates of telescope motion in

.... hour angle and declination, with the assumption that these rates are

" uniform. From each set of coordinates, residual distance values are

-" calculated, and these are tested for erroneous coordinates. If any

" such point is found having a residual distance from the predicted posi-

tion more than I0 arcseconds this point is rejected and the procedure

"" is again performed with the remaining points. Finally, the data are

- tested for telescope motion by comparison of the derived rates with the

_° standard deviations in these rates, as obtained from the calculated
L

I residuals. For no telescope motion, the topocentric coordinates during ,

_° the scan are taken as averages of the coordinates computed from the

i photographs. Iftelescope motion is included, the topocentric data point .i

_" coordinates are computed from their times and the derived motion.

T • Figure 4= 8 shows the calculation _f the orthographic coordi- 4

nates of the object points and their temperatures from the observational _!

4-21
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data. The transformation from topocentric coordinates to lunar ortho-

Y I graphic coordinates is not a strict reversal of the topocentric coordinates 1

routine, since the direction to an object point is known and not its distance. .

i After calling the topocentric ephemeris routine, the topocentric coordi-

nates of an object point are transformed through three successive sets

_ il of rectangular coordinates toaset Xo, yo, Zo. This systemhas its

,_ . origin at the lunar center, with the zo axis passing through the observer,

II -_ the Yo axis in the plane of the north lunar pole, and the xo axis directed

z . .. westward. The coordinates caIculated are of the intersection of the

_ line of sight with the xo, YO plane. By assumption of a spherical Moon,

the coordinates x, y, z of the intersection of the line of sight with the

! ; lunar surface in the x o, Yo, Zo system are obtained. An auxiliary

quantity r z is calculated and provides a test for the intersection of

! _ the line of sight with the Moon. If, as a result of this test, the line

- - of sight does not intersect the Moon, the astrometric calculation is

. stopped and the associated signal value is added to the values of sky

. background. For points on the lunar surface, the orthographic
! :

- . coordinates are obtained by transformation from the coordinates

• - X, y, Z.

2 ,

The readings of sky signal at each end of a scan are treated

separately. Each of these groups is averaged, and an average time is

computed for each. These values are then used for performance of a

i linear interpolation of sky signal throughout the scan, which is used

for the lunar signal correction. After calling the air mass routine, the

_ atmospheric transmission value at each object point is computed. Thei :

; final step of this phase of the program is the calculation of the temperatureI

i by Equation 4-16. The value of T is obtained from the function C)(T) by

a recursive routine. The temp.erature adjustment previously described

i _ is then calculated.
O
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From quantities already determined, it is convenient, at this

time, to calculateadditionalquantitieswhich may be useful for a future :

! study of directional effects of illumination and reradiation. Since the#

c

i -_ radiometer includes a facilityfor photometry in the visual region, con-

uD

sideration of scattering of sunlight from the surfP.ceis included. Solar '

heating is primarily due to the solar altitude,and heat radiationmay

depend upon altitude. Scattered sunlightdepends also upon the phase

ii angle and azimuth difference. The calculationbegins with the ortho-
tD

graphic coordinates of the subsolar and subobserver points being evalu-

: _ ated, as shown in blocks 3 and 7 of Figure 4-9. These coordinates,

i' together with the orthographic coordinates for each object point, are

-; used for the calculationof the altitudesof the Sun and Earth, the phase

[ angle, and the difference in azimuth between the Sun and Earth at each

object point.

_L

'O tm'

_W

_ t

_B

dlDllm

_D

I
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l 5. RESULTS
{
(

To date, the computer reduction has been completed for data

: recorded on fourteen evenings in 1971 and 1972. Two of these sets may

contain too few measurements to carry beyond the computer reduction

stage. In two other sets the data were degraded by clouds. The result

of the remaining ten sets are presented in this section.
(

! The computer printout of a typical lunar scan is shown in

Figure 5-I. T},e columns from leftto right show t'._._time in seconds,

, the topocentric detector hour angle and declination in radians, the lunar

orthographic coordinates, _, n, and _, the temperature, the adjusted

temperature, the air mass, and four angular quantities measured at

the observed point in radians. These are the angle between the Sun!

and Earth, the solar zenith angle, the Earth's zenith angle, and the

difference in azimuth between the Sun and Earth.

The results of the project are generally too extensive for

inclusion of this form of printout for the entire mass of data. A

convenient form for presentation is as a set of isothermal contour maps.

i Such maps have been constructed by hand from the data of November 5.

and 8, January 16, September 11, 12, and 14, 1971, and September 29
C

and 30, and October 1 and 2, 1972. These maps are shown in Figures 5-2

through 5o11. The data of the September and October evenings were

recorded with the 1.5 meter telescope in Arizona; the other three

sets were recorded with the 0.3 meter telescope in Huntsville. Measure-

ments for these maps were made in the I0. O- to 12.5-micrometer band,

and the number of data points used for each full disc map is of the

order of 4, 200.
w

For the Huntsville data, the detector size of 0.5 mm diameter

indicates the maximum resolution at 22.5 arc seconds.

E i
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!

L
Because of chopper rnisalignment, thismay be as high as 45 arc

seconds. Due tn this cause and also limited opticalquality, the rnaxi-

mum achievable resolution with the I.5 meter Arizona telescope is

probably about I0 arc seconds.

As yet the I.5 meter telescope resolution, although approached,

has not been been achieved in construction of the maps. The map

resolutionis limited by data point separation. The driftscan method

of scanning and the integrationtime of one second produce a data point

separation in the scan direction of 15 arc seconds. The data point

separation in the advance direction depends upon the number of scans,

which in turn depends upon the time availablefor scanning. If several

hours are available, about 60 scars may be recorded. In this case

the data point separation in the advance direction is 30 arc seconds.

The effectiveresolution area drawn on the maps is based upon the

number of data points indicated,

The reader may note somewhat greater structure in the maps

constructed from the Arizona data. This is due largely to the 5 times

smaller angular detector size with this telescope. The Arizona data

are also of better quality.

Many areas of infrared signal enhancement have been noted in

the data of the dark lunar surface. Because of the presence of noise in

the data, these must be viewed as being due to noise fluctuationsas

well as true lunar nighttime surface anomalies. As part of this project,

a study was carried out to identify,as best as possible, true lunar

_ . . nighttime surface anomalies. ,_s the first step, the locations of all

areas of signal enhancement corresponding to a detected temperature

increase of at least O. 5 K ° for all data sets were plotted on the standard

.. lunar orthographic grid. The lociof all luna:-darkside scans were also i

.. plotted on this same graph. A plot of these locations only is shown in

. i, 1
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i
Figure 8-12. While these points co_¢r the entire eastern quadxisphere of

t the lunar surface, they are not uniformly distributed. Numerous clumps

of points may be identified here and there on the plot. Many of these

clumps are associated with thermal anomalies in the catalog of Wildey,

Murray, and Westphal (Ref. 9). The procedure which was followed

was the establishment of a criterion for the identification of such clumps,

and the assumption that these clumps are associated with true lunar

darkside anomalies.

It was first ne,:essary to define a criterion for membership of any

point in a clump. A study made earlier in the project had indicated

an average size of the ano:nalous regions of the order of 30 arc seconds

(measured on the sky, _tef. 26). F_r the Arizona data, which constitutes

the bulk of our lunar darkside data, the effective lunar surface area

sensed for any data point is an oblong area approximately 10 arc seconds

wide and 15 arc seconds long oriented parallel to the scan direction.

The membership criterion chosen was that any candidate point must

lie within 20 arc seconds of at least one other clump member point to be

considered as l_elonging in the clump. The next step was establishment

of a criterion for the minimum number of points which would constitute

a clump, with account taken of the possibility of scans passing through

a clump which do not show a signal enhancement corresp:,_ding to the

chosen temperature increase threshold of 0.5 K °. This ; :1happen in

l the case of a true lunar surface anomalous area if a signal d_crease

occurred as a result of noise or if the area had cooled to a temperature :,

• ; I difference less than the chosen threshold. Let N be the number of points
!

" " belonging to a given clump, and let n be the n,_mb_r of scans passing

the region which Lo not show the threshold increase. Thethrough

criterion chosen was that

!• _ N-n> 3
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FIGURE5-12. LOCATIONSOF PEAK LUNAR DARKSURFACESIGNALENHANCEMENTS.
Numbershave been assignedto the anomalieslistedby
Wildey,Murray,and Westphal,
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! for any clump to be identified as an anomalous region. The locations

i ', of anomalies listed by Wildey, Murray, and Westphal (Ref. 9) ,#ere
& •

" also taken into account. In their paper, they state that most of the

' _ ' thermal anomalies they list are based on detection in each scan of

, identical scan pairs. The locations listed by these workers have

I i : therefore been counted twice in determination of the total number N
t
t

! of points. The clumps of points identifiedby these criterlaare shown

i in Figure 5-13. Many of these clumps contain eight points or more and

cover a considerable area.

" The large number of lunar darkside scans accumulated in the

:" project offers an opportunity for an attempt to determine the appearance

: (shape and thermal structure) of the anomalous areas. Any such deter-

mination must be viewed considering the noise level and the fact that

the data have been taken over various phases, and at best, probably

represents only a crude approximation. For all of the identified clumps,

temperature enhan,.ements were read from the data points in scans

passing through the clumps and these were marked on a plot constructed

on the standard orthographic grid. They were then used for drawing of

contours of constant temperature difference above the background.

These contours are shown in Figure 5-14. This procedure of c-mbining

data over various phases assumes that as a first approximation, the

temperature difference structure of an anomalous area remains relatively

: fixed in comparison with tl_ _ absolute temperature structure.

: All of these areas are listed in Table 5-I. For each area, the !

," 1 ii table lists the coordinates, name, peak temperature difference AT

from the surrounding region, temperature T of the surrounding region

: .,j at the time of observation of the peak AT, time of observation of the

peak AT after lunar sunset expressed in lunar days, size in arc seconds,

" i dates of observation of the area, and existence in the Wildey, Murray, ,
1

z
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FIGURE5-13, LOCATIONSOF PEAK LUNAR DARKSURFACESIGNALENHANCEMENTS
WHICHARE ASSOCIATEDWITH PROBABLETHERMALANOMALIES.
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FIGURE5-14. THERMALSTRUCTUREOF LUNAR NIGHTTIMETHERMALANOMALIESAS

INDICATEDBY THE SCAN DATA. The contoursrepresenttemper-
atureenhancementabove the background,and are spacedat
intervalsof 2.5 K°. The peak enhancementobservedfor
each area is markedon the map in units of K°.
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_ and Westphal catalog. Our data seems to be comparable in quality totheirs, and all of their more intense anomalies which lay in our scan
w m

paths were recorded.

__ An attempt was also made to find cool anomalous areas in the
5'

..o October I, 1972 data which would correlate with data of other nights.

• Several candidate areas were noted, but each of these correlated with

-- data of only one other evening, Their existence seems dubLous, Our
=

, , d_ta indicates that ifsuch areas exist, they are much less abundant

- - than the warm anomalies.
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6. DISCUSSIONOFERRORS

Since the lunar surface temperatures are location-dependent,

as well as time-dependent, errors in the temperature values are inevit-

ably linked with errors in positioning and time of measurement of the
_.

contours. However, it is convenient to attempt separate treatment ofo

these cases.

6.1 TIME ACCURACY

The time error of measurement of an individual value is negli-

| gible. However, it 3hould be noted that the recording of data sufficient

! for a single contour map may require several hours to accomplish.

i 6. Z SPATIAL ACCL RACY

Probably the greatest uncertainty in the positioning of the con-

tours occurs in the focal plane mirror alignment, which is done just

t prior to observation. For the data presented here, this is estimated

to produce a probable error of 0.005 lunar radii. Error also arises
T

i in the identification of the photograph coordinates, and th_s is esti-

mated here as 0. 004 lunar radii. The astrometric calculations are

done to the accuracy of the data in the Ephemeris (Ref. 23), and the

error shouldbe an order of n_g, ntv.,e smaller. In summary, the con-
r

! tours are estimated to have a probable spatial error of 0. 006 lunar

radii, and a maximum spatial error of 0.0i8 lunar radii.

!
6.3 TEMPERATURE ACCURACY

,, .

- - _rnplicit differentiation of Equation 4-16 yields the fractional varia- "

- - tion in the measured temperature Tm as a function of variations of the

" parameters. This differentiation gives

"" i
6-1 1

_m
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_r dTm _ D(Tm) ------ (6-1) :

q wh e r e

°_ D(T) = -_ . (6-Z)

I i The value of dK/K is obtained by differentiation o_ Ekluation 4-15.

To obtain a fairly simple expression, it is necessary to assume that all

; lunar caIibration points have ider.tica! temperatures and that the signal

and atmospheric transmissicn values are the same. This is not an

: unreasonable assumption for this type of order-of-magnitude calcula..m m

tion. Ifthe calibrationobservations are all recorded at approximately

i| i _ the same time, the transmission values will, in fact, be approximately

_ .-. identical. The quantity dK/K is then given by
f

" " dK 1 dVci I I dTci dz -N Z 2 -_
,.. D(Tc) T c "rac

. for N oLoervations. The subscript c refers to these calibration point

observations. Combination of Equations 6-I and 6-3 yields

t "

"- dTm - D('I'm) -- "-- _-- --- +--+_ _D(Tc) _c J"Tm L Vm N Vc Va _'-'ac4

2

Equation 6-4 may be used to obtain an expression for the maxi-

mum fractionalerror in Tin. It is

T o

m g'
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i.__,,T] _'-T_m(ATmmax = D(Tm)Ll--_-m-m ] + l--_-c] + z _ ] + ]D(Tc ) _¢] i
q _ Ta

t

•_ _"i (6- 5)

i _i i Here, each term in the brackets on the right side is the maximum frac- _:

i tional error in that quantity. The replacements _ [AVcilmax = N IAVcl
_-] = N_ATcl have been made.: _ _ s and_JATcilmax

.. ;-= If the probable error of measurement is defined as the standard
i :

- , deviation, the square of the probable fractional error in the resultant

-_- temperature will be the sum of squares of the probable fractional errors

- • in the components for random error distributions (Ref. Z4). In E_lua-

- - tion 6-4, each deviation dVci and dTci must be treated as an individual

• ° component. The probable fractional error in T m is then

_1
_ 2

• _ T---_ = D(Tm)(_ m , + _ i'_c] + 2X v a ]z N1 D(Tc)I ATc]Z_cJ
prob

- " (6-6)

p

Z "_ 2

Here, the replacements _(AVci)prob = N(AVc) z and _(ATci)prob = N(ATc) z

! ' have also been used. The quantities AV c and ATc, as above, represent

average values for these errors. Each term in the braces on the right

side represents the square of the probable fractiol,alerror in the quantity,

The first term in braces represents the noise error during an object

'. point measurement. The second quantity represents the noise error

during measurement of the calibration l:oints. The third term is the

}.• error in the value of atmospheric transmission. The last term in braces ,

represents the error in the calibration temperatares. It is of inter-

1 est to note that the probable error in the determined temperature values

i

!:. !6-3
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which is due to errors associated with the measurement of the calibra-

It.. tion points is inversely proportional to the square root of the number of
these points for a random distribution of these errors.

/i The requirement of random error distributions for Equation 6-6

suggests a more detailed examination of the nature of the errors of theFr

'! _, various components. The fractional errors in the signal values arm

due to instrumental noise, sky noise, and errors in residual sky back-

+/:. ground correction. The first two sources are random, and the last

includes both random and systemati: variations. However, the errors

li in the residual sky background correction should be small because of

the simultaneous background correction employed. The errors in atmos-

_' . pheric transmission are due to random fluctuations, systematic error

due to error in the determined attenuation coefficient, and systematic

_+ error inherent in the band model approximation employed. Since cali-

bration is effected on the Moon, systematic errors in the computed

• . transmission will tend to cancel. In addition, the excellent quality of

_ the 10- to 1Z-micrometer window will result in small transmission

. . errors for data taken in this region. The largest cause of error lies

.- in the calibration temperatures, T c. Error in these temperatures may

be divided into two sources: error in the Saari and Shorthill data used

- for calibration, and error in the approximation used to convert the Saari

! • and Shorthill temperatures to our observation conditions. Except for

- zero-point error in the Saari and Shorthill data, trial calculation indi-

] cates that these errors are largely random. T error distributions ofQ

i - the parameters, for which each component in Equation 6-6 represents
• - the probable error, should, therefore, be largely, although not entirely,

_ + random. This equation is, therefore, approximately correct. Since the
+

+ values of the component errors are estimate6, additional accuracy of

- Equation 6-6 achieved by increased complexity is not warranted.

e
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i F_stimates have been made of the accuracy of the various param-

,_ eters used in the temperatu ._e reduction. With these values, Equations
7

6-5 and 6-6 have been evaluated _o obtain an indication of the order-of=

!

magnitude error to be expected in the temperature values presented. -

The author has taken a probable noise voltage equivalent to that signal

: voltage for a noise temperature of 105°K. The maximum noise voltage

i is taken as twice the probable value. The quantity (AT/T)prob is assumed

i to be 0.02 and (AT/T)max was taken as 0.04. Ten calibration points

I were assumed, each having a temperature of approximately 350°K. The

t probable error in the calibration point temperatures was chosen to be

i 8 K °, with maximum error of 16 K °. This takes into account the prob=

a

[ able error of approximately 4 K °) indicated by Saari and Shorthill for
[

their data points at 350°K. The results of the evaluation of Equations

6-5 and 6-6 are shown in Figure 6-I. The curves exhibit a minimumI

error around 150°K. For very low lunar surface temperatures, the

first term inside the brackets becomes large because of the sharp

decrease in the signal voltage V m. In this case, the same noise signal

value will correspond to a larger temperature difference _han at higher

temperatures. For tetnperaturcs above 150°K) the factor Tna D(Tm),

which increases with temperature, dominates. He-e, _2,_ _, rot in the
I

signal is approximately proportional to that _ignal. Towarclls higher

temperatures, the decrease in temperature change for given signal

change is insufficient to offset this proportionality.

p

tD

6-5
P

f

I

1974024136-090



..I

32

!

! 28!

i

i 24 /
#

,,"16

IJJ

12

o

M ERROR

T- 8 y

"" PROBABLEERROR

0
-- 1O0 150 200 250 300 350 400
•. SOURCETE;4nERATURE(°K)

" FIGURE6-I. ESTI_TED ERROROF THE SCAN OBSERVATIONS

.. 6-6
e

]

1974024136-091



t

! 7. MEASUREMENTOFTHEMOONDURINGTHETOTAL

j. ECLIPSEOFFEBRUARY10, 1971

Thermal measurements of the Moon during an eclipse are, in

addition to such measurements of the dark surface, essential data for

the dls+.irction between the various proposed surface models. Measure-

ments showing the variation of the absolute surface temperature as a

function of time throughout the duration of an eclipse constitute the most !

desired information. For maximum utility, such cooling curve obser-

vations should be taken for as many different regiors as possible.
, °

The total lunar eclipse of February 10, 1971, provided an, ideal

... opportunity for the acquisition of such data. The entire duration of the

_. eclipse was visible from the Huntsville site and, in fact, throughout

_. much of the Western Hemisphere. At Huntsville, the Moon was not far

_ from the zenith during mid-total__ty, and the wea_.her was cold and

• , ex':remely clear.

" i 7. 1 THE OBSERVATIONS

" q Because of the limited duration of even the longest total lunar

eclipse, observation by drift scanning the entire disc is not practical.

"" Therefore, seven lunar regions were selected for spot measurements in

" " the 10.01/-12.5// band. The orthographic coordinates /or these regions

" are shown in Table 7-1, and these regions are also sho_.n in Figure 7-1.

, Some time after the eclipse it was discovered that an inadvertent
m

error had been present in the alignment of the guide telescope used to

set on the regions. When the German-equatorially mounted _elescope

was swung to the opposite side of the pier during mid-tota.lity, a shift

of approximately ') 12 lunar radii occurred in the lunar surface points
im

7-1
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" FIGURE 7-1. LUNAR REGIONS STUDIED DURING THE FEBRUARY n 'TAL ECLIPSE
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measured. Such a position shift is manifested chiefly in the temperature-

time curves as an alteration of the width of the curves from those for

single points. An overall narrowing of there curves of about four minutes

resulted and this necessitated the time correcti( _ procedure described in

the appendix. The temperature values during eclipse are also slightly
' altered by three causes. The difference in eclipse temperatures due to
T

the difference in eclipse duration and temperatures outside eclipse are

_ negligible. Lastly, the random setting scatter of approximately 0.02 lunar

radii about the individual points precludes a detectable temperature

difference due to detailed lccal differences in lunar surface geology.

For each of the seven regior, s studied, Table 7-1 lists the orthographic

coordinates for the individual shifted points and the coordinates of each

resultant point to which .he time values were corrected.

The radiometer was used as attached to the 30- centimeter tele-

scope at Huntsville. Observations were taken from more than 1 hour

before first contact to approximately 1 hour after last contact. The 10-

to 1Z-micrometer filter was used with an integration time o£ 1 second.

The germanium bolometric detector was operated at 2°K with a chop

frequency of 10 } ertz. The chopping was between lunar and sky radia-

tion by the scheme of Figure 2-1. The ac signal was fed through the

same phase rectification amplifier and data acquisition system that is

used for scanning data. The data were recorded only on paper printout.

The sequence of observations consisted of a spot measurement of

the residual sky signal, followed by a spot measurement of each region

in turn. Each spot measurement included a record of 15 printed signal

values. The time was recorded during each measurement. The spot

measurement time of 15 seconds was sufficiently shoit so tl'at a signi-

ficant charge in lunar surface temperature dia not occur during a mea-

surement, even in the penumbral stages. Approximately 40 measure-

• ,, ments were taker, of each region,

i 7-4
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7.2 DATA REDUCTION AND RP__ULTS

Since no astrometric analysis was required, data r_dlction was

sufficiently limited sG that it could be done by hand. For some necessary

quantities which have a smooth variation with time, labor was sa_ed by

graphing these quantities and then reading off the values of the quantity

for the desired times.

The first step of the reduction was the averaging of the signal

values for each _pot measurement. The spot measurements of the

residual sky background were IJlotte¢ias a function of time, and a

smooth curve was drawn tb_nugb the points. For each object point

l time, a value for the rezidual sky background x_-as read from the curve,and th_s value was used to correct the associated object point measurement.

From data in the Ephemeris (Ref. Z3) al_d from the kr,.'.v'n si_e

location, the air mass for the center of the lunar disc was c_lculateJ

and g,aphed as a function of time. This calculation included the effect

of the topocentric parallax. An air mass value for each data point time

waJ read from the graph. It is estimated that in the worst case, the

error in atmospheric transmission made by using the disc center was

less than 1 percent.

In order to conveniently effe,.t calibration and to obtain an atmos-

pheric attenuation coefficient, the assumption was made that following

last contact of a 1,,nar eclipse, the lunar surface quickly re_,ches the

t_mperature distrlbutio,_ prior to first ccnt:,ct. Data of pre_iou_ investi-

gators (Ref. ZZ) support this assumption. Apparently. during a lunar

. , eclipse, only the few millimeters near the surface are affected. Also,

since the observations were taken in the !0- to 12-micrometer band,

., the we_k line atmospheric absoprtion _ d model approxi_ _ation should

,,, be applicable. A pl_t was made of the quantity _n[ Vm/Q(Tm)] as a func-

i 7-5

] 974024 ] 36-096



tion of the air mass, X, for a!! of the observations outside of eclipse.

The values of T m used in this plot were read from the data of Saari and

Shorthill {Ref. 4) and were corrected for solar angle and distance by the

method of Section 4-1. A computer-calculated table of the function Q(T)

was useful for obtaining these values. This plot is shown in Figure 7-2.

A line was fitted to the points by the least squares method, and this line

._s also s'own in the plot. As shown by Equation 4-13, the slope of the

:ine is th negative attenuation coefficient -k I. This coefficient was

t_lnid to be 0. 053. Equation 4-15 was evaluated to obtain K, which was

_ound to be I, Z70 volts-cmZ-ster,/watt.

With these values for k I and K and with the graph of air mass as

a smooth function of time, a graph was prepared of the quantity I/K_ a

._ plotted as a smooth function of time. Values of _n'_s quantity were then

read from the graph for each data point time, and these were multiplied

by the corresponding signal values. Note that according to Equation 4-16,

this produc* is equivalent to the radiance Q(T m) ove_" the wavelength band.

The computer-prepared table of Q(T) was then used to obtain the unknown

T m value s.

f
J In any study of the thermal response of the lunar surface to an

t ectipse the time is a crucial parameter. Because of the aforementioned

position shift, the time values were corrected so that the measurements

would apply to single lunar surface points. These point_ were chosen to

be midway between the measured points. For calcutatiou of these corrections

it was assumed that the geocentric angular distance of any lunar surface

point from the anti-solar point in the heavens (the direction of the Earth _s

shadow) is the key paramet,cr, since, for given Earth-Sun and Earth-Moon

distances, the insolation of that surface point depends solely upon this

- parameter. These corrections were obtained by calculating, for each

Q, ___ 7-6
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J

region at each data point time, the time shift by which the corrected
• point precedes (or succeeds) the observed point in having the same

I geocentric angular distance from the anti-solar point. The corresponding
times for the corrected points were then obtained by applying these calcu-

I lated time shifts to the data point times. Since these time corrections are
small several simplifying approximations could be made. These approxi-

i mations, the mathematical formulation for the time corrections, and the

error of the approximations are presented in the appendix.

The resulting cooling curves for the seven lunar regions are shown

in Figures 7-3 through 7-9. With the exception of region 1, these curves

have approximately identical initial temperatures. It is of interest to note

that region 1, which has a lower initia] temperature, undergoes a smaller

temperature decrease during eclipse. At the lower temperature, this region

would not so severely radiate its heat to space.

For the purpose of fitting theoretical calculations, tabular data arc

more suitable. Therefore, these data are presented also in Table 7-2.

7.3 ERROR ANALYSIS OF TEMPERATURES

Equations 6-5 and 6-6 have been evaluated numerically to obtain

an estimate of the accuracy of the eclipse observations. For this evalua-

tion, the same values of the parameters have been used as for the scan

data, with the exception of t}.e approximate calibration temperature, the

errors in calibration temperature, and the number of calibration obser-

vations. The following values have been used for the eclipse observa-

tions: Tc = 390°K, (ATc)prob = 10 K °, (ATc)max= 20 K °, and N= 31.

These calibration temperature errors reflect the uncertainty of 5 K °

indicated by Saari and Shorthill for their measarements at 390°K.
i"
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b,

The results are shown plotted in Figure 7-10. The probable

error is better than for the scan data, and reflects the larger number

of calibration observations. This error is, in fact, lower than the

uncertainty of any single value used for calibration, and s_ows the

effect of error cancellation for a quantity derived from a large number

of input quantities having randomly distr.uuted errors.
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APPENDIX. ADDITIONALCORRECTIONSTOTHESCAN :
ANDECLIPSEDATA

SCAN DATA CORRECTION FOR SMALL PHASE CHANGES

We begin with Equation 4-10. At the lunar subsolar point, this

equation become s

F e

(l - A)_ -- £'ma" To 4 (A-l)

where T O is the subsolar point temperature. Division of Equation 4-10

by Equation A-1 gives

Wm 4

cos Ze - To 4 (A-2)

for the same value of de. We now differentiate Equation A-Z and divide

by this same equation. The res,alt is

- A Tm T tan Ze= " 4 AZ® (A-3)

in the approximate £h-notation, This is the relation used for phase

" correction over most of the illuminated surface. It may, however, be

placed in a more convenient form. Equation 4-11 gives the relationship

between the lunar solar zenith angle Z® and the hmar orthographic coord;-

nates of the Sun and object point. No1 that the Sun always lies almost

in the lunar equatorial plane, so th; ,) = 0. If substitutions in terms

of the selenographic longitudes I an¢_ _e are made into Equation 4-]1,

this equation takes the form

1

cos Z e = (I - _l_) cos (_ -. le) . (A-4)

! :

t
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After differentiation, substitution for cos (I - fo), and use ofLk_ o =
I

-2_rd_'r, this equation becomes

1

! (1 - rlz - cos z Zo) _
-, AZo _- 4-... 2_ _-r (A-5)

sin Z o

,,

- _ in the/k, notation. The variable T represents time expressed in lunar

, days. We now substitute Equation A-5 into Equation A-3 and use

Equation A-2. The result is
1

• [ c tl_', v rlz ,To 8: AT m : $ _'T m (I - ) - AT • (A-6)

For the lunar afternoon surface the minus sign is chosen; the positive

sign applies to the forenoon surface.

The model of Winter and Saari {Ref. 25) is used for phase cor-

rectio,aover the nighttime surface. Their cooling curve may be fitted

with sufficient accuracy by the quadratic

t
1" -- 0.0001537 Tm z - 0.0461 T m + C (A-7)

where C is a constant. Differentiation provides

- zX'r (A-8)
AT m : 0.0461 - 0.0003074 T m '

.j_ . which is the equation used for lunar darkside phase adjustment of

temperatures.

A-2
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[ Special consideration should be given to the lunar daytime sur-

face near the terminator, for here the assumption of small conducted

i flux used in deriving Equation A-6 is invalid. The observational data
indicate that near lunar sunset the surface temperature gradient

-dTm/dZ o reaches a maximum valuc of approximetely

( dTm)- 4000 K" (A-9)dZ o 2_. radian 'i-Ilax

and that this value is independent of selenographic latitude. The corre-

sponding temporal gradient is obtained from

" AT = - AZ e AT (A-IO)max max

where the factor AZo/AI" is obtained from EquationA-5. Note that

near the terminator Z e = w/2. Thus

(  T-Zm] : 4000(1 _n2)½ °K- AT ] lunation " (A-tl)max

The temporal _radient indicated by EquationA-6 reaches this value

at T m = 209°Kwhich is independent of _. On the darkside, the temporal

gradient given by EquationA-8 has this value on the equator at T m =

149°K. The ob:_ervational data indicate that bright side temperatures

near lunar sun,_et do not drop to much less than this value. In this

boundary region near hmar sunset for 209°K> T m > 149°K, a phase

adjustment interp,,lated between Equation A-6 at T m : 209°K and Equa-

tion A-8 at 14q°K has been chosen. The adjustment equation for this

region is

AT = -(,(,.7 (1 -nz) a (Tm - 140°K)¢ (209°K- T m) A'r . (A-12)
!
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Equations A-6, A-8, and A-1Z have been incorporated into the

computer reduction program. At present Equation A-6 is used for

the entire lunar forenoon surface, but data sufficient to test the adjust-

ment in the lunar sunrise regionbas not yet been reduced. The pre-

sently reduced data indicate that this phase adjustment procedure is

satisfactory over the small phase changes for which it has been

employed,

ECLIPSE DATA TIME SHIFT CORRECTION

The approximations made for the calculation of the eclipse

time shifts are that the motions of the Moon in right ascension and
.)

declination were uniform over the time period of the eclipse, that the

"7 spherical astronomical coordinate system could be replaced by a

rectangular system over the region of sky covered by the eclip e, that

the geocentric librations could be neglected, that the variation nf

geocentric position angle during the eclipse could be neglected, and

that the differential approximation could be used. The conseouences

of these approximations are examined at the end of this subsection.

During the time period covered by an eclipse, the separation

in right ascension and declination between any lunar surface point and

. the antisolar point (the direction of the Earth's shadow) are given very

_ • nearly by the linear expressions

cr - c_AS = _o + `_t ,

4m

. and (A- 13)

- 5AS = 5 0 + 8t .

A-4

1974024136-119



I _ ) 1 1 1

t

" = Here ao, _, 8o, and 5 are constants. In the rectangular approximations

the apparent angular separation r between these points is given by

r z = (a =O_AS )2 cos z 6 0 + 16 = 5As)z . (A=14)

Equations A=13 may be substituted into Equation A=14, and the resulting

equation may be solved for t as a function of _o, _r, 6 0 , 8, and r. The

total differential is then taken according to

2

at _t (A- 15)
• , dt - aCro dcr o + _ d5 o

" Equations A-13 and A-14 are again used for substitution for r in

- " EquationA-15. If the approximate A-notation is used, the final expres-

sion for At is

"" At : .z +$z (&c°sZ 8o) Aao+ 8 &So
.. c_ cos z 5o

&ao c°SZSo + 88o + (&z cosZ 8o +Sz) tj " (A-16)

. This equation applies in the penumbz_, Prior to mid-eclipse the nega=

:_ . . tire sign is used; after this time the positive sign is chosen, Careful

_ . examination of Equation A-16 reveals that the first two terms in the

:_ , . brackets give the time shift due to the separation of the lunar surface

i ... points in the direction of apparent lunar motion relative to the antisolar
point, The third more complex term gives this shift due to the combina-

.. tion of the separation of these points perpendicular to this direction and

.,, the circularly symmetrical shadow of the Earth.

: A- 5 ;:
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Equation A-16 was applied to the eclipse data point times. The

constants So and 50 were calculated for each lunar surface point from

data in the Ephemeris (Ref. 23). The angular velocities c_ and 6 are also

. from ephemeral data, and the positioned shifts_c_ o and A6 o were obtained

from the data of Table 7-1 and the ephemeral data. The time shifts

: calculated for the outer penumbral boundary were used for data point

times outside eclipse; data point times during the total phase were

corrected with time shifts computed for the penumbra-umbra boundary.

Error in the time correction due to the approximations used has

been evaluated as follows. The Ephemeris indicates that fractional errors

due to the nonuniform lunar motion in right ascension and declination

have maximum values of 0. 006 and 0.01Z, respectively. The rectangu-

lar coordinates representation will produce a fractional error of

1/2A5 tan 5 due to the convergence of the meridians at the poles, and

a fractional error of 1/4A_ sin 5 due to the curvature of the declina-

tion circles. The quantities As and _6 represent the extent of sky

covered at declination 5. Maximum values of these fractional errors

are estimated as 0.006 and 0.003, respectively. The maximum frac-

tional error due to neglect of the geocentric librations is of the order

of ],%1 tanll + IAb tanbT for librations A_, Ab, and surface point

coordinates 1, b, and here is 0.004. The variation of the geocentric

position angle causes a maximum equivalent fractional error equal to

the variation in radians and here is 0.008. Finally, the fractional

error due to the differential approximation occurs in the third term in

; brackets of EquatiunA-16. The fractional error due to this approxima-

tion is Ay/Zy[(rZ)/(r 2 - yZ)], where Ay is the point separation perpen-

• dicular to the direction of lunar motion through the shadow, r is the
.

apparent angular distance from the antisolar point, and y is the value

of r at mid-eclipse. The maximum fractional error due to this approxi-

mation occurs at the umbral boundary and is about 0.0Z0. The maximum

A-6
q-
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r

fractional error due to all sources is 0. 060 or 7 seconds in time. The

probable fractional error is estimated to be 0.013, which is equivalent

to about 1 second of time,

r
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